
SRI 
International 

® 

TABLOG: THE DEDUCTIVE-TABLEAU 
PROGR~NGLANGUAGE 

September 1984 

Technical Note 328 

By: Yonathan Malachi 
Zohar Manna 
Computer Science Department 
Stanford University 

Richard Waldinger 
Art.ifirial Intelligence Center 
Computer Science and Technology Division 

APPROVED FOR PUBLIC RELEASE: 
DISTRIBLTION UNLIMITED 

This rescn.rch was supported in part by the :\atinn:d 
Science Foundation under Grants MC'S-82- I .J!j:!:l, 
iv!CS-81-11S86, and MCS-8I-O.S'i65. by the {:nited Stales 
Air Force Office of Scientific Research unrl<•r c:r:int 
AFOSR-81-0014, by DARPA under Contmet, NOO:l!l-8:?
C-0250, and by a grant from IBM Research, San .los<', 
California. 

Presented at the ACM Symposium on LISP and 
Functional Progmmming, University of Texas at 
Austin, August 5-8, 108'1. 

333 Ravenswood Ave. • Menlo Park, CA 94025 
:415• 326·6200 • TWX: 910-373-2046 • Telex: 334-486 





Abstract 

TABLOG (Tableau Logic Programming Language) is a language based on first-order pred
icate logic with equality that combines functional and logic programming. TABLOG incor
porates advantages of LISP and PROLOG. 

A program in TABLOG is a list of formulas in a first-order logic (including equality, 
negation, and equivalence) that is more general and more expressive than PROLOG's Horn 
clauses. Whereas PROLOG programs must be relational, TABLOG programs may define 
either relations or functions. While LISP programs yield results of a computation by 
returning a single output value, TAB LOG programs can be relations and can produce several 
results simultaneously through their arguments. 

TAB LOG employs the Manna-Waldinger deductive-tableau proof system as an interpreter 
in the same way that PROLOG uses a resolution-based proof system. Unification is used 
by TABLOG to match a call with a line in the program and to bind arguments. The basic 
rules of deduction used for computing are nonclausal resolution and rewriting by means of 
equality and equivalence. 

A pilot interpreter for the language has been implemented. 

I 




































